1,375 research outputs found

    The oceanic response to Greenland melting: the effect of increasing model resolution

    Get PDF
    This study investigates the oceanic response to an enhanced melting of the Greenland Ice Sheet. A series of forced ocean simulations with different horizontal resolutions from 0.5° to 0.05° is used. The main focus is to investigate the oceanic behaviour to a freshwater input within models of different horizontal resolutions and differing in the representation of mesoscale processes. In particular, the role of the mesoscale eddies on the spreading of freshwater in the subpolar North Atlantic is assessed. Two melting scenarios are realised, a strong meltwater release of 0.1 Sv as diagnosed by model data of climate models under high CO2 conditions, and a more realistic melting scenario, where the diagnosed melting trend of 0.53 mSv/a from 1990 - 2009 is used. The simulations are based on the NEMO ocean sea-ice model and cover resolutions from coarse 0.5° (ORCA05), to eddy-permitting 0.25° (ORCA025), and to eddy-resolving 0.05° (VIKING20). VIKING20 is a new model development, and is based on a local grid refinement approach to reach grid sizes of about 3 km around Greenland. In the both melting scenarios, the coarse resolution models (ORCA05 and ORCA025) suggest a prominent spreading of the meltwater from the Labrador Sea across the North Atlantic into the Nordic Seas. This hinders the formation of dense water masses, leading to an ongoing reduction in the AMOC. Conversely, results from VIKING20 reveal that mesoscale processes have a distinct potential to counteract the effect of the additional meltwater from Greenland. In comparison to coarser configurations, VIKING20 exhibits an equatorward export of meltwater from the Labrador Sea within the Deep Western Boundary Current and the potential to store meltwater in the northern Gulf Stream recirculation gyre. This results in less meltwater reaching the convection region of the Nordic Seas, and consequently in the realistic melting scenario no response in the AMOC is seen over three decades. The flow path of the North Atlantic Current, in particular the representation of the North-West Corner, is found to be a key factor determining the spread of freshwater in the North Atlantic. The presence of the North-West Corner, realistically reproduced in VIKING20, inhibits an enhanced eastward spreading of meltwater anomalies across the North Atlantic, preventing a pronounced freshwater leakage from the Subpolar Gyre into the Subtropical Gyre via the east Atlantic. This freshwater leakage is enhanced in both coarse configurations, especially in the strong melting case. In this artificial melting scenario the freshwater forcing predominates, such that the equatorward export along the North American coast and the presence of the North-West Corner are of minor importance in determining the oceanic response to meltwater spreading. Whereas in this case all configurations behave similarly and show a decline of the AMOC of about -40 % to -60 % after four decades, the AMOC reacts much less to the realistic melting scenario. These results emphases the need in climate projections to strive for both, realistic Greenland melting rates and represent mesoscale processes properly

    Advective timescales and pathways of Agulhas leakage

    Get PDF
    Current research indicates an increase in Agulhas leakage for the past and coming decades. This change potentially alters the strength of the Atlantic meridional overturning circulation, in particular, through advection of positive density anomalies into the North Atlantic. To explore the fate of Agulhas leakage, results from a Lagrangian analysis were evaluated, with virtual floats advected within an eddy-permitting ocean model (ORCA025). A considerable fraction of Agulhas leakage reached the subtropical North Atlantic: of a mean Agulhas leakage transport of 15.3 Sv entering the South Atlantic, 9.7, 7.7, and 6.1 Sv crossed sections at 6 degrees S, 6 degrees N, and 26 degrees N, respectively. The most probable transit time of leakage to reach the respective latitudes is one to two decades. We suggest that changes in Agulhas leakage could manifest in the Gulf Stream regime most probably within two decades. These results were supported by an eddy-resolving implementation of the ocean model (INALT01

    Composition and variability of the Denmark Strait Overflow Water in a high-resolution numerical model hindcast simulation

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2830–2846, doi:10.1002/2016JC012158.The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.Norwegian Research Council Grant Number: 2316472017-10-0

    Flow paths and variability of the North Atlantic Current: A comparison of observations and a high-resolution model

    Get PDF
    The North Atlantic Current (NAC) is subject to variability on multiannual to decadal time scales, influencing the transport of volume, heat, and freshwater from the subtropical to the eastern subpolar North Atlantic (NA). Current observational time series are either too short or too episodic to study the processes involved. Here we compare the observed continuous NAC transport time series at the western flank of the Mid-Atlantic Ridge (MAR) and repeat hydrographic measurements at the OVIDE line in the eastern Atlantic with the NAC transport and circulation in the high-resolution (1/20°) ocean model configuration VIKING20 (1960–2008). The modeled baroclinic NAC transport relative to 3400 m (24.5 ± 7.1 Sv) at the MAR is only slightly lower than the observed baroclinic mean of 27.4 ± 4.7 Sv from 1993 to 2008, and extends further north by about 0.5°. In the eastern Atlantic, the western NAC (WNAC) carries the bulk of the transport in the model, while transport estimates based on hydrographic measurements from five repeated sections point to a preference for the eastern NAC (ENAC). The model is able to simulate the main features of the subpolar NA, providing confidence to use the model output to analyze the influence of the North Atlantic Oscillation (NAO). Model based velocity composites reveal an enhanced NAC transport across the MAR of up to 6.7 Sv during positive NAO phases. Most of that signal (5.4 Sv) is added to the ENAC transport, while the transport of the WNAC was independent of the NAO

    Meridional Oceanic Heat Transport Influences Marine Heatwaves in the Tasman Sea on Interannual to Decadal Timescales

    Get PDF
    Marine heatwaves (MHWs) pose an increasing threat to the ocean’s wellbeing as global warming progresses. Forecasting MHWs is challenging due to the various factors that affect their occurrence, including large variability in the atmospheric state. In this study we demonstrate a causal link between ocean heat content and the area and intensity of MHWs in the Tasman Sea on interannual to decadal time scales. Ocean heat content variations are more persistent than ‘weather-related’ atmospheric drivers (e.g., blocking high pressure systems) for MHWs and thus provide better predictive skill on timescales longer than weeks. Using data from a forced global ocean sea-ice model, we show that ocean heat content fluctuations in the Tasman Sea are predominantly controlled by oceanic meridional heat transport from the subtropics, which in turn is mainly characterized by the interplay of the East Australian Current and the Tasman Front. Variability in these currents is impacted by wind stress curl anomalies north of this region, following Sverdrup’s and Godfrey’s ‘Island Rule’ theories. Data from models and observations show that periods with positive upper (2000 m) ocean heat content anomalies or rapid increases in ocean heat content are characterized by more frequent, larger, longer and more intense MHWs on interannual to decadal timescales. Thus, the oceanic heat content in the Tasman Sea acts as a preconditioner and has a prolonged predictive skill compared to the atmospheric state (e.g., surface heat fluxes), making ocean heat content a useful indicator and measure of the likelihood of MHWs

    Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima

    Get PDF
    A sequence of global ocean circulation models, with horizontal mesh sizes of 0.5°, 0.25° and 0.1°, are used to estimate the long-term dispersion by ocean currents and mesoscale eddies of a slowly decaying tracer (half-life of 30 years, comparable to that of 137Cs) from the local waters off the Fukushima Dai-ichi Nuclear Power Plants. The tracer was continuously injected into the coastal waters over some weeks; its subsequent spreading and dilution in the Pacific Ocean was then simulated for 10 years. The simulations do not include any data assimilation, and thus, do not account for the actual state of the local ocean currents during the release of highly contaminated water from the damaged plants in March–April 2011. An ensemble differing in initial current distributions illustrates their importance for the tracer patterns evolving during the first months, but suggests a minor relevance for the large-scale tracer distributions after 2–3 years. By then the tracer cloud has penetrated to depths of more than 400 m, spanning the western and central North Pacific between 25°N and 55°N, leading to a rapid dilution of concentrations. The rate of dilution declines in the following years, while the main tracer patch propagates eastward across the Pacific Ocean, reaching the coastal waters of North America after about 5–6 years. Tentatively assuming a value of 10 PBq for the net 137Cs input during the first weeks after the Fukushima incident, the simulation suggests a rapid dilution of peak radioactivity values to about 10 Bq m−3 during the first two years, followed by a gradual decline to 1–2 Bq m−3 over the next 4–7 years. The total peak radioactivity levels would then still be about twice the pre-Fukushima values
    • …
    corecore